An Overview of the Toxic Substances Control Act (TSCA)
TSCA 101
Principal Provisions of TSCA

- Section 4 - testing of existing chemicals
- Section 5 - screening of new chemicals or new uses of existing chemicals
- Section 6 - risk management
- Section 8 - information collection and reporting
- Section 7 – imminent hazard
- Section 9 - relationship of TSCA to other federal laws
- Section 11 – inspections
- Section 12 - chemical export
- Section 13 - chemical import
- Section 14 – CBI
- Sections 15, 16 and 17 - prohibited acts, penalties & EPA's enforcement powers.
- Section 20 and 21 - citizen actions
- Section 26 – use of categories versus specific substances
At the beginning...

- When TSCA was first enacted, companies informed EPA which chemicals were produced at that time.
- That list of chemicals resulted in the initial TSCA inventory (1979).
 - Also referred to as “grandfathered” chemicals
- Any chemical developed and marketed AFTER 1979 has gone through New Chemical Review
NEW CHEMICAL REVIEW
TSCA Section 5

1. Company submits PMN (pre-manufacture notice)
 - Chemical identity information
 - Production volumes
 - Intended categories of use
 - Description of by-products
 - Molecular formula
 - Available information

2. EPA conducts initial review

3. EPA Develops Hazard Profile
 - Structure Activity Team uses analogs
 - Evaluates health effects, environmental effects, environmental fate
 - Establishes health and environmental hazard potential

4. EPA Develops Exposure/Release Profile
5. EPA Holds Focus Meeting – Final Decision
 – More testing is needed for EPA to make a decision
 • Company can produce data or withdraw PMN
 – PMN allowed after additional data provided by company
 – PMN allowed, but with use restrictions
 – PMN allowed without restrictions
 – PMN not allowed
 • Company can withdraw PMN before final decision

6. Company submits NOC (Notice of Commencement)
 – New chemical added to the Inventory
Existing Chemicals – Reporting & Testing

TSCA Inventory

- Section 8(a): EPA can collect info on exposure, use, production.
- Section 8(d): EPA can collect info on ongoing or existing studies.
- Section 8(c): Companies retain allegations of adverse effects and submit it to EPA upon request.
- Section 8(e): Companies immediately report substantial risk info to EPA.
- Section 8(b): Inventory Update Companies report production & use info for substance above threshold.

Section 4 test rules - manufacturers can be required to conduct tests on specified chemicals.

Section 6 - EPA addresses unreasonable risks through restrictions, warning labels, recordkeeping, product bans.
TSCA Inventory
Grandfathered vs New Chemicals

<table>
<thead>
<tr>
<th>Category</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Grandfathered" chemicals</td>
<td>63,000</td>
</tr>
<tr>
<td>"New" Chemicals on TSCA Inventory (Evaluated through PMN process)</td>
<td>18,100</td>
</tr>
</tbody>
</table>
TSCA Inventory ≠ Chemical in Commerce

• The TSCA inventory is a comprehensive list of all chemicals ever allowed by EPA to be manufactured.
 – This list contains about 82,000 chemicals
 – Mix of “grandfathered” and “new” chemicals

• The chemical list reported on the IUR is the best reflection of chemicals actually being used in commerce.
 – The last IUR list shows about 8,300 chemicals used in commerce or about ten percent of the total TSCA Inventory

• The remaining chemicals on the Inventory are
 – Produced in small amounts (less than 10,000 pounds annually) OR
 – Not produced at all OR
 – Inorganics (such as salts) OR
 – Polymers, which are generally viewed as low risk
TSCA Inventory & Chemicals in Commerce

Chemicals in commerce (reported on last IUR) 8,300

Other Inventory chemicals (not produced at all, produced below IUR threshold, polymer or inorganic)
Chemicals in Commerce
Grandfathered versus New

- Grandfathered chemicals on IUR list: 6,600
- "New" Chemicals on IUR (evaluated through PMN process): 1,700
Chemicals in Commerce & HPV Program

• Industry agreed to voluntarily supply EPA with evaluation data on chemicals in commerce produced at 1 million pounds or more (aka “high production volume” or HPV chemicals)

• Under this program, information on more than 2,200 chemicals have or will be provided and made publicly available.
Looking at individual chemicals

- IUR chemicals where information will be provided under HPV Program: 26.5%
- Other IUR chemicals: 73.5%
IUR & HPV - Perspective #2
Looking at amount (volume) of chemicals
Let’s see what you know

TSCA: Perception versus Reality
True or False?

TSCA is the only law that is intended to enable regulation of chemicals both before and after they enter commerce.

FALSE!
Chemical industry one of the MOST regulated industries

In addition to the Toxic Substances Control Act (TSCA), we have…

• Federal Insecticide, Fungicide and Rodenticide Act (FIFRA),
• Federal Food, Drug and Cosmetics Act (FFDCA),
• Clean Air Act (CAA),
• Clean Water Act (CWA),
• Resource Conservation and Recovery Act (RCRA),
• Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA)
• Emergency Planning and Community Right-to-Know Act (EPCRA),
• Occupational Safety and Health Act (OSHA)
• Hazardous Materials Transportation Act (HMTA)
• Consumer Product Safety Act (CPSA)
• Federal Hazardous Substances Act (FHSA)
• Food Quality Protection Act (FQPA).
True or False?

TSCA was established to eliminate risks from chemicals.

FALSE
Unreasonable risk standard

Congress recognized that we do not live in a 'zero risk' world

Both the risks and benefits of chemicals need to be considered to prudently carry out the goals of the Act.

"Unreasonable risk" is the criterion for regulating or banning chemical substances under the Act.
True or False?

Companies are not required to develop specific test data for new chemicals.

TRUE
BUT a thorough evaluation of the new chemical still takes place

Companies must submit:
- any available health or environmental test information
- information on the chemical identity and structure
- anticipated uses, production volume
- by-products
- human exposures
- disposal practices

EPA scientists use the information submitted to:
- Reach scientific conclusions based on chemical size & structure
- Identify structural analogs and use the analog data in evaluation
- Conduct computer modeling
 - If the above not sufficient, EPA will require testing
True or False?

The TSCA system discourages US companies’ innovations in green chemistry.

FALSE
US System More Innovative

Compared to Europe, US industry has
– Higher economic performance
– Higher R&D productivity
– Higher patent productivity
– Higher polymer patent
– Higher numbers of new chemical notifications.

TSCA allows US companies to remain innovative while still appropriately evaluating the new chemicals for risk.
True or False?

EPA has required testing for about 200 existing chemicals since the agency began reviewing chemicals in 1979.

TRUE

But it’s a trick question!
Testing EXISTING chemicals done under Section 4

- EPA issues Section 4 test rule OR
- EPA and companies work together under an enforceable consent agreement (or ECA)

Since TSCA was enacted, data on approximately 200 chemicals have been developed through Section 4 or ECAs.
BUT…..

Testing also done as part of NEW CHEMICAL review
• 300+ chemicals tested as part of the new chemical review process
• Remember – EPA can require testing if needed during PMN review

Work also done under voluntary programs
• HPV Chemical Challenge program
 – 300+ companies, 100 consortia
 – Hazard screening data sets have or will be completed on 2,200+ chemicals
• Voluntary Children’s Chemical Evaluation Program (VCCEP)
 – 35 companies, 10 consortia
 – 20 chemicals
• Extended HPV program
 – Numbers still coming in, but at least 230 committed thus far

TSCA unique in allowing innovative approaches to gathering information needed for chemical risk management.
True or False?

EPA has issued regulations to ban or limit production or restrict the use of only five products.

FALSE
Beyond Section 6…

It’s true that only five substances have been restricted under TSCA Section 6

BUT - over 1,000 substances are restricted under Section 5
 – EXAMPLE: A chemical does not show unusual toxicity except to certain aquatic organisms. EPA uses Section 5 to prevent waste disposal to water or sewers, and compel disposal methods that do not present environmental risks.

And let’s not forget all the chemicals voluntarily controlled through industry’s product stewardship programs.
True or False?

Effective regulation of existing chemicals is not possible because of the court decision in the asbestos case.

FALSE
Asbestos Rule Did Not Fail Because of TSCA

It failed because EPA made rulemaking errors:
• No Notice and Opportunity to Comment on a Key Justification
• Failure to consider less burdensome alternatives
 – EPA never pursued any other risk management approaches
• Flawed Methodology/Skewed Reasoning
 – Inflated estimates of benefits
 – Failure to Consider Harm From Use of Substitutes
 – Failure to consider costs

The Court did not reach conclusions lightly and certainly did not act on technicalities
True or False?

Information is often claimed “confidential’ in TSCA submissions.

TRUE
But with very good reason!

- The issue of Confidential Business Information (CBI) cannot be taken lightly.
- Congress clearly understood the need to build in strong protections for CBI.
- TSCA compels industry to provide a wealth of sensitive data
 - Chemical identity for a new substance which may not yet have received patent protection
 - Volume produced, which would signal to competitors the potential market size for the chemical
 - Molecular weight range for a new commercially valuable polymer
 - Impurities, which can signal key information on process or precursor substances
True or False?

Any information can be claimed as CBI under TSCA.

FALSE
NOT Health and Safety Info

A company is not entitled to claim health and safety data as confidential.

Some groups argue that the general public needs access to CBI to understand potential risks, but this doesn’t make much sense.

- Presumably, the general public would be most interested in health and safety information
 - That information cannot be claimed CBI (see above)
- Specific chemical names and chemical structures are normally claimed confidential
 - Generic descriptions of chemicals are not.
- Generic name descriptions, along with the health and safety information, is suitable for most purposes.
True or False?

There is almost no meaningful safety information on chemicals to which the public is exposed.

FALSE, FALSE, FALSE

Really, really FALSE
There is TONS of information

• Companies have conducted testing and evaluations of existing chemicals for many, many years.
 – The problem is not that the information doesn’t exist.
 – It’s that, until recently, it has not been publicly available.
Why wouldn’t information be publicly available?

• In the old days….
 – Public databases derived from scientific journal articles
 – Journals published cutting edge research information OR highlighted studies where adverse effects were found.
 – So if you conducted a safety study and found no adverse effects, the journals were not interested in publishing.
 • Research information remained in the company files.
• In other words, there was no easy mechanism to make the information readily available to the public.

• Until, that is, the advent of the Internet.
 – ACC members are using this tool to address this weakness as part of their product stewardship responsibilities.
Lessons from HPV Program

- HPV Program commitment covered 17 major “endpoints,”
 - physical/chemical properties
 - ecological toxicity
 - environmental fate
 - toxicity to human health

- Standard battery of toxicity tests that is used by EPA under TSCA (and harmonized internationally under OECD).
 - Includes specific tests designed to address endpoints of concern to both adult and children’s health

- Of all the animal test studies covered by the approximately 2,200 chemicals in the HPV program, only 3% had to be generated.

- In other words, 97% of the information was available, but – until now - had not been *publicly* available.
Examples of Sources for Public Information on Chemicals

- Environmental Protection Agency (EPA)'s HPV Information System: http://www.epa.gov/hpvis/index.html

- Voluntary Children’s Chemical Evaluation Program http://www.epa.gov/chemrtk/vcccep/index.htm

- Toxic Substance Control Act Test Submission database http://www.syrres.com/eSc/tscats_info.htm

- Integrated Risk Information System (IRIS) http://www.epa.gov/iris/

- European Chemical Substance Information System (ESIS) http://ecb.jrc.it/ESIS/

- INCHEM (developed by International Program on Chemical Safety) http://www.inchem.org/
Questions?

Kathleen Roberts
Director
ACC Product Stewardship Team
Kathleen_Roberts@americanchemistry.com